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ABSTRACT

Building an integrated human-machine decision-making sys-

tem requires developing effective interfaces between the

human and the machine. We develop such an interface by

studying the multi-armed bandit problem, a simple sequential

decision-making paradigm that can model a variety of tasks.

We construct Bayesian algorithms for the multi-armed ban-

dit problem, prove conditions under which these algorithms

achieve good performance, and empirically show that, with

appropriate priors, these algorithms effectively model human

choice behavior; the priors then form a principled interface

from human to machine. We take a signal processing perspec-

tive on the prior estimation problem and develop methods to

estimate the priors given human choice data.

Index Terms— Active inference, Bayesian inference,

multi-armed bandit, human decision making

1. INTRODUCTION

Inference, the process of reaching conclusions from data, lies

at the heart of many contemporary technologies, including

object recognition and fault detection among numerous oth-

ers. Often, such technologies are employed not directly for in-

ference but rather to infer some information (the type of a per-

ceived object, the presence of a fault, etc.) in order to take an

action (manipulate the perceived object, isolate and recover

from the fault, etc.). In this paper, we study the multi-armed

bandit (MAB) problem as a simple example of a decision-

making task where inference and action are closely linked.

Additionally, many inference problems are highly struc-

tured in the sense that only small amounts of data are required

to perform accurate inference; often this is due to the exis-

tence of a great deal of contextual information, such as the

types of objects or faults that the system is likely to encounter.

Providing this contextual information can greatly improve the

performance of the system, e.g., its convergence rates, it is of

great interest to develop methods to do so. Contextual in-

formation is often difficult to systematically extract, so many

deployed systems use human supervisors to provide the con-

textual information and to guide the automated system [1, 2].
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The performance of such human-machine systems could be

improved by rigorously studying the connections between hu-

man and machine decision making and thereby developing

effective interfaces between the human and the machine.

In this paper, we consider the MAB problem from the

viewpoint of both the human and the machine and develop the

Upper Credible Limit (UCL) algorithm, a Bayesian algorithm

that models the principal features of human choice behavior

in MAB problems while also achieving optimal performance

when employed with appropriate values of its input parame-

ters, principally the algorithm’s priors. These input parame-

ters then form a parsimonious quantitative interface between

human and machine, and we develop methods to estimate the

priors given human choice data. Significant portions of these

results have previously appeared in various publications, in-

cluding [3, 4, 5], and [6].

2. THE MULTI-ARMED BANDIT (MAB) PROBLEM

The multi-armed bandit (MAB) problem, introduced by Rob-

bins [7], is a sequential decision-making problem in which

a decision-making agent is presented with a set of N op-

tions (an option is also called an arm in analogy with the

lever of a slot machine). Each option i ∈ {1, . . . , N} has

an associated probability distribution pi whose mean mi is

unknown to the decision maker. At each sequential decision

time t ∈ {1, . . . , T} the agent picks arm it and receives re-

ward rt ∼ pit(r) drawn from the probability distribution as-

sociated with arm it. The agent’s objective is to pick arms

such that the expected value of the rewards received from the

T decisions is maximized:

max
{it}

J, J = E

[

T
∑

t=1

rit

]

=
T
∑

t=1

E [mit ] , (1)

where the latter expectation is over different realizations of

the sequence {it}.

Each choice of it is made sequentially, conditional on the

information available to the agent at time t. If the mean re-

wards mi were known to the agent a priori, the optimal policy

would be trivial: set it = argmaxi mi for each t. However,



since the mean rewards are not known, the agent must simul-

taneously seek to select arms for which the rewards are poorly

known (explore) and select arms that appear to have high re-

wards based on current information (exploit). The tension

between selecting arms with uncertain (but potentially high)

rewards and arms that appear to have high rewards is known

as the explore-exploit tradeoff, and is common to problems

in active learning and adaptive control. In the literature, the

rewards are often assumed to be Bernoulli and model, e.g.,

whether or not an individual will click on an ad on a website

[8], however other reward distributions have been considered.

2.1. Performance bounds for MAB problems

In the MAB literature, it is common to assume that the re-

ward distributions pi are stationary. Under this assumption,

a famous result due to Lai and Robbins [9] bounds the per-

formance of any algorithm solving the MAB problem. The

bound is typically stated in terms of regret, which is a mea-

sure of performance loss due to uncertainty. Defining mi∗ =
maxi mi and Rt = mi∗ − mit as the expected regret (con-

ditioned on it) at time t, the objective (1) can be rewritten as

minimizing the cumulative expected regret defined as

T
∑

t=1

Rt = Tmi∗ −
T
∑

t=1

mit =

N
∑

i=1

∆iE
[

nT
i

]

,

where nT
i is the number of times arm i has been chosen up

to time T and ∆i = mi∗ − mi is the expected regret due

to choosing arm i instead of i∗. To minimize the cumulative

expected regret it suffices to minimize the number of times a

suboptimal arm i ∈ {1, . . . , N}\{i∗} is selected.

Lai and Robbins [9] showed that the expected number of

times a suboptimal arm is selected is at least logarithmic in

time, i.e.,

E
[

nT
i

]

≥

(

1

D(pi||pi∗)
+ o(1)

)

log T (2)

for each i ∈ {1, . . . , N}\{i∗}, where o(1) → 0 as T → +∞
and D(pi||pi∗) is the Kullback-Leibler divergence between pi
and pi∗ . This bound implies that the cumulative expected re-

gret must grow at least logarithmically with time. In the liter-

ature, algorithms that achieve cumulative expected regret that

is uniformly bounded by a logarithmic term with a constant

that is within a constant factor of (2) are said to achieve loga-

rithmic regret and considered to have optimal performance.

In the remainder of this paper, we focus on the case of

Gaussian rewards, i.e., where pi is Gaussian with mean mi

which is unknown to the decision maker and variance σ2
s,i,

which is known. If, in addition, the reward variance is uni-

form (i.e., σs,i = σs), then the constant 1/D(pi||pi∗) in (2)

reduces to 2σ2
s/∆

2
i .

2.2. Features of human decision-making behavior in

MAB problems

In [3], we identified five salient features of human decision-

making behavior in MAB problems. These features are likely

to be apparent in human decision-making behavior in other

problems as well so we repeat them here as follows.

1. Familiarity with the environment: Humans approach

problems with prior knowledge, which here is manifest

as prior knowledge about the mean reward mi associ-

ated with each arm i.

2. Ambiguity bonus: Wilson et al. [10] have shown that

human decision-making in MAB problems is based on

a linear combination of an estimate of the mean reward

mi and the uncertainty in that estimate.

3. Stochasticity: Human decision-making behavior is in-

herently noisy [11].

4. Finite-horizon effects: Both the level of decision noise

and the ambiguity bonus effect are sensitive to the time

horizon T [10].

5. Environmental structure effects: Humans tend to learn

the structure of the tasks they perform, i.e., they learn

the correlation structure among the rewards from differ-

ent arms, and use this structural information to improve

their decisions [12].

3. UCL: A BAYESIAN MAB ALGORITHM

In [3], we developed an algorithm called the Upper Credi-

ble Limit (UCL) algorithm for solving MAB problems with

Gaussian rewards. UCL is a Bayesian algorithm inspired by

the Bayes-UCB algorithm developed by Kauffman et al. [13]

for the case of Bernoulli rewards. Both algorithms are based

on the optimism in the face of uncertainty heuristic [8], which

suggests that algorithms can achieve good performance by

formulating the set of possible environments (i.e., reward dis-

tributions) that are consistent with observed data, then acting

as if the true environment were a sufficiently favorable one in

that set.

UCL maintains a belief state about the rewards using

Bayesian inference. Let m ∈ R
N be the vector of unknown

mean rewards. We let the prior on m be the Gaussian dis-

tribution N (µ0,Σ0), where µ0 ∈ R
N and Σ0 ∈ R

N×N

is a positive-definite matrix. Since the reward distributions

are assumed to be Gaussian with known variance σ2
s,i, the

Gaussian prior is conjugate to the observation likelihood and

the belief state (µt,Σt) updates in closed form according to

well-known linear equations [14]. The marginal distribution

for the ith component of the belief state is then the Gaussian

distribution N (µt
i, σ

t
i), where µt

i = (µt)i and σt
i =

√

(Σt)ii.



3.1. The deterministic UCL algorithm

At each decision time t ∈ {1, . . . , T}, the deterministic UCL

algorithm selects the arm that maximizes the upper limit of

the (1 − 1/Kt) credible interval, i.e., it selects an arm it =
argmaxi Q

t
i, where

Qt
i = µt

i + σt
iΦ

−1(1− 1/Kt),

Φ−1 : (0, 1) → R is the inverse cdf of the standard Gaussian

random variable, and K ∈ R>0 is a tunable parameter.

3.2. The stochastic UCL algorithm

As noted as feature 3 in Section 2.2, human decision-making

behavior in MAB problems is inherently noisy. Therefore, in

[3], we considered an extension of the deterministic UCL al-

gorithm which models the decision noise using the Boltzmann

selection mechanism, i.e., sets the probability pti of picking

arm i at time t equal to

pti =
exp(Qt

i/νt)
∑N

j=1
exp(Qt

j/νt)
.

In the limit νt → 0+, this scheme chooses it = argmaxi Q
t
i

and as νt increases the probability of selecting any other arm

increases. Thus, Boltzmann selection generalizes the max-

imum operation and is sometimes called the soft maximum

(or softmax) rule.

The parameter νt is known as the temperature parameter

of the softmax, and the functional form of the parameter νt is

known as a cooling schedule. In [3], we showed that cooling

schedules of the form νt = ν/ log t, ν > 0 are effective in

modeling human behavior.

3.3. Performance guarantees for UCL

In [3], we studied the case of homogenous sampling noise

(i.e., σ2
s,i = σ2

s for each i) and showed that the UCL algorithm

achieves logarithmic regret with an uncorrelated uninforma-

tive prior. Specifically, we proved the following theorem.

Theorem 1 (Regret of the Deterministic UCL algorithm).

The following statements hold for the Gaussian multi-armed

bandit problem and the deterministic UCL algorithm with

uncorrelated uninformative prior and K = 1:

1. the expected number of times a suboptimal arm i is cho-

sen until time T satisfies

E
[

nT
i

]

≤

(

8σ2
s

∆2
i

+ 2

)

log T + 3;

2. the cumulative expected regret until time T satisfies

JR =
T
∑

i=1

Rt ≤
N
∑

i=1

∆i

((

8σ2
s

∆2
i

+ 2

)

log T + 3

)

.

The implication of this theorem can be seen by comparing

the first statement of the theorem with the Lai-Robbins bound

(2): the deterministic UCL algorithm achieves logarithmic re-

gret and thus is considered to have optimal performance. A

similar theorem holds for the stochastic UCL algorithm with

appropriate tuning rule for ν; see [3, Theorem 7].

3.4. UCL as a model of human decision making

In [3], we studied data from a human-subject study where

participants solved a spatially-embedded MAB problem. By

spatially-embedded MAB problem, we mean a MAB problem

where the arms correspond to patches of space, in this case,

squares in a 10× 10 grid. Such a problem might model, e.g.,

function optimization in a discretized space. The spatially-

embedded MAB problem then inherits structure from the

smoothness of the function being optimized.

We showed that, in this problem, subject performance

largely fell into two categories which we termed phenotypes:

one corresponded to cumulative regret depending approx-

imately linearly on T and represented poor performance,

while the other corresponded to cumulative regret depending

approximately logarithmically on T and represented good

performance. Subjects displaying the logarithmic phenotype

in fact achieved performance better than an otherwise “opti-

mal” algorithm over the short time horizon of the experimen-

tal problem, which we ascribed to the subjects’ understanding

of the structure of the problem. In the spatially-embedded

MAB problem, the smoothness of the underlying function

being optimized means that the rewards from one arm will be

highly correlated with the rewards from nearby arms and less

correlated with arms that are farther away.

The assumption of spatial smoothness in mean rewards

can be translated into an assumption on the correlation struc-

ture of m by choosing the elements of Σ0 to have the form of

an exponential radial basis function with length scale λ ≥ 0
representing the spatial smoothness and overall scale factor

σ0 ≥ 0 representing the strength of the subject’s beliefs:

(Σ0)ij = σ2
0 exp(−rij/λ),

where rij is the distance between arms i and j.

Similarly, one can parametrize the prior mean µ0 ∈ R
N

by setting (µ0)i = µ ∈ R for each element i. Finally, by

adopting the cooling schedule νt = ν/ log t, ν > 0, we

can parametrize the subject’s decision noise with a single

parameter. This yields set of parameters consisting of the

four scalars µ ∈ R, σ0 ≥ 0, λ ≥ 0, and ν ≥ 0. In [3],

we showed that careful choices of these four parameters al-

lowed the stochastic UCL algorithm to produce behavior that

qualitatively matched the two behavioral phenotypes.



4. MODEL FITTING TO HUMAN CHOICE DATA

In [3], we showed that the four-dimensional parameter vec-

tor θ = (µ, σ0, λ, ν) was sufficient to allow the stochastic

UCL algorithm to qualitatively fit human subject data. There-

fore, measuring θ would allow a system to quantify a human

operator’s intuition about the structure of the problem, as ex-

pressed through their choice behavior. In [4], we studied the

problem of estimating θ from behavioral data in detail using a

maximum likelihood approach. We showed that the stochas-

tic UCL algorithm defines a likelihood function in a straight-

forward way and that this likelihood function can usefully be

approximated as a linear function of θ by linearizing about

a nominal parameter vector θ0. We derived conditions under

which the resulting maximum likelihood problem is convex

and showed that it could be solved by standard convex opti-

mization tools.

We then applied the estimation procedure to data from the

human subject experiment first studied in [3]. The experi-

ment design was such that subjects solved one of two tasks,

each with a different underlying reward structure, which we

referred to as a landscape. The subjects presented with each

landscape separated into two phenotypes as in [3], resulting

in four groups of subjects: high and low performance pheno-

types for each of the two landscapes. We used the estimation

procedure to estimate θ for each subject and then compared

across the four groups of subjects.

The parameter estimates were relatively precise (i.e.,

small confidence intervals) for the two high-performance

groups and relatively imprecise (i.e., large confidence inter-

vals) for the two low-performance groups. This is unsurpris-

ing, as the stochastic UCL algorithm is designed to have high

performance and it is likely that the set of parameter val-

ues corresponding to low performance is large, while the set

of values corresponding to high performance is likely to be

relatively small. Comparing the parameter estimates across

the four groups then showed that there was a statistically-

significant difference in parameter values between the two

high performance groups but no other statistically-significant

differences between groups. One can then conclude that, at

least as quantified by θ in the stochastic UCL model, the sub-

jects who had high performance had detectable differences

in their intuition about the problem. Therefore, estimating θ
from a subject with high performance can provide quantified

information about how to achieve high performance with the

stochastic UCL algorithm.

5. IMPLICATIONS FOR HUMAN-MACHINE

INFERENCE NETWORKS

This work has implications for human-machine inference

networks. For applications where inference is being per-

formed to support a decision, it may be possible to model

the joint inference-decision task using the multi-armed bandit

framework. For cases where the MAB model is appropriate,

our findings show that humans can achieve performance that

greatly exceeds that of an otherwise “optimal” algorithm,

particularly when the time horizon T is short and the MAB

problem has significant structure. Furthermore, the stochastic

UCL algorithm can be used as a model to quantify the in-

tuition of a human decision maker in terms of its parameter

vector θ.

The work in [4] shows that standard maximum likelihood

parameter estimation techniques can be used to estimate θ and

that statistically-significant information can be extracted from

the observed behavioral choice data of high-performing in-

dividuals. One could then build a human-machine decision-

making system where an expert would perform a certain num-

ber of initial choices. These initial choices would be used to

estimate the expert’s value of θ, and then the system could

make autonomous choices by employing the stochastic UCL

algorithm the estimated value of θ as input parameters. In

this way, the model and estimator could be used to train the

stochastic UCL algorithm to make better decisions.

There are a number of clear directions for future re-

search along these lines. One direction is to pursue modeling

inference-decision problems in the MAB framework. Gai et

al. [15] have presented one example from the domain of wire-

less networking, but there are undoubtedly others. Another

direction pertains to the construction of human-machine sys-

tems. In this setting, open questions abound: What is the ap-

propriate amount of training for the machine system? When

should the machine ask for additional training from the hu-

man, for example if it detects that the problem has changed in

some way? If the human needs to make the ultimate decision,

what information should the machine provide, and in what

form (e.g., a suggested action or set of actions)? Undoubtedly

the answers to these questions will depend upon the applica-

tion context, but there are likely fundamental problems to be

solved as well.

6. CONCLUSION

In conclusion, we argue that the multi-armed bandit problem

is a useful framework for studying the interaction between

human and machine in the context of active inference prob-

lems. The stochastic UCL algorithm can be considered both

as a parametric model of human decision-making behavior in

MAB problems and as a computationally-efficient and high-

performance method to solve such problems. The algorithm

parameters θ form a quantitative, principled interface between

human and machine. This framework will allow the construc-

tion of joint human-machine inference systems which will

raise additional fundamental questions in turn.
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